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Global mean energy balance

* The Earth receives energy from the sun (and reflects
back some portion of it)

 To come into energy balance (equilibrium) the Earth
must emit the same amount of energy it receives

Emitted
/ = Emitted

(1' ) = O-Te4




Equator-to-pole contrast

*The tropics receive more solar radiation than the high
latitudes (extratropics)

*To come to equilibrium, the tropics must either emit
excess radiation or transport energy to the extratropics
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Seasonal Cycle

« Seasonal variations in solar insolation are of order 1 in
the extratropics

 How much energy goes into the atmosphere versus
the ocean to drive seasonal variations in temperature
and circulation?

Summer / Winter

Heating

Cooling

Emitted

Energy gain Energy loss




Outline

1. What determines the Earth’'s planetary

2. What determines the
meridional heat transport in
the climate system?

X

albedo? (How much solar radiation
gets reflected)

Tropics Extratropics

3. How do seasonal variations In
solar insolation lead to
atmospheric heating?




1 : What determines the Earth’s planetary albedo?
(solar radiation reflected at top of atmosphere)

Reflected by
Surface

4




Simplified (isotropic) shortwave radiation model

Atmospheric Surface
C Contribution Contribution
S = incident S To planetary To planetary
Albedo Albedo

2\ Xop ofAtmosphere

a = surface
albedo

Surface




Partitioning of planetary albedo into atmospheric
and surface components

Reflected
by Surface
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Observed (CERES) surface and atmospheric
contribution to planetary albedo

Surface Albedo (%)

A <, = -{Y‘A = ‘:
7 ~
et gl 3
3 .
& £
7 v
5 - 2
¢ »

10




Observed Surface and atmospheric

contribution to planetary albedo

Zonal Mean
Contributions to Planetary Albedo
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Observed Global Mean Planetary Albedo
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Planetary Albedo Partitioning:

Comparison of models (CMIP3 pre-
industrial) and observations (CERES)
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Histogram of hemispheric average

planetary albedo

Southern Hemisphere (SH)
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Hemispheric average planetary albedo
partitioning in climate models

Atmospheric Contribution to Hemispheric Average Planetary Albedo b Surface Contribution to Hemispheric Average Planetary Albedo
0.34 I T . . 0.34

QO

o
w
N
o
w
N

B OBSERVATIONS
— 1:1 Line

o
o
Q
g
<
Py
[
S
[}
c
©
o
[}
(®)]
[\
—
[}
>
Z
o
[
(]
¥ —
Q.
@
£
Q
I

Hemispheric Average Planetary Albedo

o
[N
o

0.24 0.26 0.28 . . 0.02 0.04 0.06

Hemispheric Average o, ,.0s

Inter-model spread in Hemispheric average planetary albedo
Is a consequence of differences in cloud reflection

Surface albedo makes a much smaller contribution to basic
state albedo, model bias and inter-model spread
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The inter-model spread in

AHTc4 and ITCZ location

are strongly correlated

ITCZ location and atmospheric
heat transport across the equator
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of the Hadley cell location
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Hemispheric contrast of radiation and ITCZ location

Atmospheric/ocean heat transport across the equator

0.2 PW MHT_ = <NET,,> 0.2PW . . .
o sozPw / ITCZ lives in the hemisphere where

the atmosphere is heated more
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2 : What determines meridional
heat transport?

Emitted

Tropics Extratropics




Understanding heat transport

Heat Transport From Radiation Imbalance
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ASR*, OLR*, MHT, and the tropical/
extratropical energy budget
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ASR*, OLR*, MHT
Dynamic Limit

—Absorbed Solar (ASR)
—Qutgoing Longwave (OLR
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ASR*, OLR*, MHT
Radiative Limit
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Heat Transport In Climate Models

(CMIP3)

Meridional Heat Transport (MHT) Southern Hemisphere (SH)
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Model heat transport spread In

terms of OLR* and ASR*

MHT and ASR* (PW) MHT and OLR*
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Understanding ASR*

Incoming and Net Solar Radiation
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ASR* and planetary albedo

+ SH Models
+ NH Models
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What determines the equator-to-pole contrast of
planetary albedo?

‘ Reflected by
/ Surface




Surface and atmospheric contributions to the equator-
to-pole contrast in absorbed shortwave radiation

Simplified Partitioning of ASR
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Planetary Albedo Partitioning

Zonal Average
Planetary Albedo

Zonal Average
Planetary Albedo Partitioning
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Atmospheric and Surface reflection
contribution to ASR*

Cloud Reflection
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3. The seasonal cycle of atmospheric
heating and temperature
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Annual\mean heating summary

surface

Surface energy balance (absorbed solar flux = upward flux to the atmosphere)
requires that the ratio of heating from direct absorption to surface energy fluxes is
approximately:

atmospheric absorption (SW) /atmospheric transmissivity(SW)

=> direct absorption accounts for 30% of atmospheric heating




Spatial structure of atmospheric heating

Annual Average
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Limiting models of seasonal
atmospheric heating

SW absorbing
atmosphere

SW transpa rg:nt
atmosphere

Shallow ocean




Atmos heric energy budget
Conventiona
OLR

Surface

Solar + turbulent + LW




Atmospheric energy budget -- Observations
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Atmospheric Shortwave Absorption

Seasonal
Atmospheric
Heating

Latitude
mean heat flux (W m)

Seasonal difference from annual
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Annual Mean Seasonal Amplitude
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The seasonal heating of the atmosphere in

climate models .
Seasonal Amplitude
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Vertical structure of SW absorption

GFDL Model
Seasonal amplitude
In the extratropics

Radiation Transmltted by the Atmosphere
SW Absorption Profile . , 10 70
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Structure of seasonal amplitude in temperature

Seasonal amplitude of SW '
absorption (W m2 per 1000 hPa) Seasonal amplitude of temperature

0 30N
Latitude

Seasonal cycle is surface amplified where the surface heat
fluxes contribute to seasonal heating (over land)




Conclusions

1. Global mean planetary albedo is primarily
(88%) due to atmospheric reflection and only 4 Reflected by
secondarily (12%) due to surface reflection
-> Climatology and model spread
-> Hemispheric contrast in planetary albedo Atmosphere
sets ITCZ location

Meridional Heat Transport (MHT)

Obeonatins g | 2. Poleward energy transport varies by
20% in climate models and is a
consequence of simulated clouds

Meridional Heat Transport (PW)
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3. The seasonal heating of the
atmosphere is due to shortwave heating
of the atmosphere and is opposed by
surface fluxes (contrast to annual mean)







CO, doubling expectations
Summer schematic

Moistening and melting
=>Mores seasonal energy
input directly into the
Open ocean atmosphere (SWABS)
=> Less seasonal energy
input at the surface (SHF)




2>(CO2 Change in Seasonal Atmospheric Heating
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Radiation Transmltted by the Atmosphere
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2XCO, change SW Abs.

2XCO, Change in Seasonal amplitude of temperature
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Meridional structure of
atmospheric attenuation

C Atmospheric Attenuation
of Surface Albedo
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Planetary Albedo and Surface
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Meridional profile of albedo in all
simiulations
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Inter-model spread in albedo by
region
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2XCO, Planetary Albedo

2XCO, Hemispheric Average Changes
Aa and Aa, Aa
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Carl’'s Question: Planetary
Albedo Partitioning Error Bars

Observational Planetary Albedo Partitioning with Error Estimates

—Atmospheric Contribution
—Surface Contribution
— Total

[0))]
o

N
o

—
G
e
O
©
O
D
]
sy
]
e
O
[
0
o
O
e
c
2
-
=
e
-
e
C
O
O

Sine of latitude




Planetary Albedo Partition: Sensitivity to
shortwave absorption assumptions

Observations

Planetary albedo partitioning (B)  surface albedo and o P
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What determines OLR*?

Why don’t differences in ASR* and OLR*
compensate for each other?

Longwave Cloud Forcing
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(Kiehl, 1994)




A Model Spread in ASR* and Atmospheric Albedo
Contribution to ASR*
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Hemispheric Contrast Of TOA Radiation

Radiation at TOA (W m™)

Contribution to planetary albedo

Hemispheric asymmetry of radiation at the top of the atmosphere

. NH Net

Y« SH Net
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Hemispheric asymmetry of planetary albedo
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NH reflects more SW radiation
in the subtropical deserts. SH
reflects more SW in the
extratropics due to clouds in
the Southern Ocean

The NH is warmer (more OLR),
especially in the polar
latitudes

Planetary albedo is partitioned
into cloud and surface
contributions via the method
of Donohoe and Battisti (2011)




Vertical structure of SW absorption

GFDL Model Chou Lee (1996)

Seasonal amplitude Water vapor absorption
In the extratropics In the summer

SW Absorption Profile
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